
Am. J. Hum. Genet. 76:773–779, 2005

773

Localization of a Type 1 Diabetes Locus in the IL2RA/CD25 Region
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As part of an ongoing search for genes associated with type 1 diabetes (T1D), a common autoimmune disease, we
tested the biological candidate gene IL2RA (CD25), which encodes a subunit (IL-2Ra) of the high-affinity interleukin-
2 (IL-2) receptor complex. We employed a tag single-nucleotide polymorphism (tag SNP) approach in large T1D
sample collections consisting of 7,457 cases and controls and 725 multiplex families. Tag SNPs were analyzed
using a multilocus test to provide a regional test for association. We found strong statistical evidence in the case-
control collection ( ) for a T1D locus in the CD25 region of chromosome 10p15 and replicated the58P p 6.5 # 10
association in the family collection ( ; combined ). These results illustrate the utility53 510P p 7.3 # 10 P p 1.3 # 10
of tag SNPs in a chromosome-regional test of disease association and justify future fine mapping of the causal
variant in the region.

Introduction

Despite hundreds of association studies, few have been
consistently replicated (Dahlman et al. 2002; Hirschhorn
et al. 2003; Ioannidis et al. 2003; Lohmueller et al. 2003).
In type 1 diabetes (T1D [MIM 222100]), only four loci
have been identified and successfully replicated: the HLA
class II genes on chromosome 6p21 (Cucca et al. 2001),
the insulin gene (INS) on chromosome 11p15 (Bell et al.
1984; Barratt et al. 2004), the CTLA-4 gene on chromo-
some 2q33 (Nisticó et al. 1996; Ueda et al. 2003), and
the recently associated PTPN22 gene on chromosome
1p13 (Bottini et al. 2004; Smyth et al. 2004). It is now
generally accepted that large numbers of individuals and
more stringent criteria for interpreting association stud-
ies are required to ensure reliable detection of association
(Dahlman et al. 2002; Ioannidis et al. 2003; Lohmueller
et al. 2003; Thomas and Clayton 2004; Wacholder et
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al. 2004; Freimer and Sabatti 2004; Smyth et al. 2005;
Wang et al. 2005).

Most cases of T1D result from immune-mediated de-
struction of the insulin-producing b cells of the pancreas
in an inflammatory process that involves many cell types
of the immune system, including T lymphocytes. The
four identified T1D loci underpin these known features
of the disease, since they are all involved in T cell de-
velopment (for INS, in terms of thymic tolerance of the
insulin molecule), activation, expansion, and regulation
(Todd and Wicker 2001; Ueda et al. 2003; Anjos and
Polychronakos 2004). As part of an ongoing search for
genes associated with T1D, we tested the biological can-
didate gene CD25 (MIM 147730). In common with the
T1D loci identified elsewhere, CD25 is central to im-
mune regulation. CD25 expression on regulatory T cells
is essential for their function in suppressing T cell im-
mune responses and autoimmune disease (Salomon et
al. 2000; Malek and Bayer 2004; Viglietta et al. 2004).
Additionally, in humans, a rare mutation of CD25
caused severe autoimmune disease (Sharfe et al. 1997).

We adopted a linkage disequilibrium (LD)-mapping
approach to test for an association between T1D and
the CD25 region, using tag SNPs (Johnson et al. 2001;
Chapman et al. 2003; Clayton et al. 2004) in large case-
control and family collections. Elsewhere, we have shown
that the use of tag SNPs can reduce genotyping costs by
approximately two-thirds (Chapman et al. 2003; Clay-
ton et al. 2004; Lowe et al. 2004).



774 Am. J. Hum. Genet. 76:773–779, 2005

Subjects and Methods

Subjects

The resequencing panel consisted of 32 CEPH indi-
viduals (Utah residents with ancestry from northern and
western Europe) (Fondation Jean Dausset–CEPH).

The 3,527 cases were recruited as part of the United
Kingdom Genetic Resource Investigating Diabetes (U.K.
GRID) study, which is a joint project between the Uni-
versity of Cambridge Department of Paediatrics and the
Department Medical Genetics at the Cambridge Institute
for Medical Research and is funded by the Juvenile Dia-
betes Research Foundation and the Wellcome Trust. The
eventual aim of the project is to collect 8,000 cases with
T1D for comparison with 8,000 controls from the 1958
British Birth Cohort (1958 BBC), to allow well-powered
genetic association studies. The 1958 BBC is an ongoing
follow-up of all persons born in Great Britain during
one week in 1958 (National Child Development Study),
including a recent biomedical assessment during 2002–
2004 at which blood samples and informed consent were
obtained for creation of a genetic resource. All cases were
white, and at least 97% of the controls were of white
ethnicity.

All families were of white European descent and were
composed of two parents and at least one affected child.
The population studied consisted of 472 multiplex fami-
lies from the Diabetes United Kingdom Warren collec-
tion and 268 multiplex families from the (U.S.) Human
Biological Data Interchange. The characteristics and in-
clusion criteria for each family collection have been de-
scribed elsewhere (Vella et al. 2004), and these and ref-
erence to the case-control samples can be obtained from
the Juvenile Diabetes Research Foundation/Wellcome
Trust Web site. All DNA samples were collected with
approval of the relevant research ethics committees,
and written informed consent was obtained from the
participants.

Identifying Polymorphisms

To identify polymorphisms in the CD25 gene, the ex-
ons, exon/intron boundaries, and up to 3 kb of 3′ and 5′

flanking sequence were resequenced in DNA samples
from 32 CEPH DNA samples by use of nested PCR prod-
ucts; we also sequenced the regions �9,000 to �8,000,
�4,000 to �3,000, and �3,000 to �4,000 bases, num-
bered relative to the transcription start site, to encom-
pass the CD28 response element (CD28rE), the Positive
Regulatory Region (PRR) III, and PRR IV, respectively
(Toledano et al. 1990; Kim and Leonard 2002). In total,
15 kb was sequenced from the CD25 region, spanning
∼60 kb. The sequencing reactions were performed using
the Applied Biosystems (ABI) BigDye (version 3.1) chem-
istry, and the sequences were analyzed using an ABI 3700
capillary sequencer. Analysis of the sequence traces was

performed using the Staden package (Bonfield et al. 1998)
and was double scored by a second operator. All sequence
information and primer locations are provided at the
T1DBase Web site.

Tag SNPs

As described elsewhere (Chapman et al. 2003; Clayton
et al. 2004), we used the resequencing genotype data to
investigate the ability of smaller subsets of SNPs to pre-
dict the genotypes of the remainder. Predictive perfor-
mance was assessed using a locus measure (coefficient2R
of determination), which measures the ability to predict
each known SNP genotype by linear regression on the
tag SNP genotypes (Chapman et al. 2003). We consid-
ered only SNPs with a minor-allele frequency (MAF)
�5% and required that the subset of tag SNPs predict
the remaining SNPs with a minimum of 0.8.2R

We selected an optimal set of tag SNPs, using a mix-
ture of step-up, step-down, and exhaustive subset search
algorithms. Since the exhaustive subset search procedure
can be slow, we initially identified a set of tag SNPs
selected by both step-up and step-down searches, and
we determined the best additional set of tag SNPs by
exhaustive subset search of the remaining SNPs (Lowe
et al. 2004). The programs for the selection and analysis
of tag SNPs are implemented in STATA and can be
downloaded from D.G.C.’s Web site.

Genotyping

Tag SNPs were genotyped using either Taqman (Ap-
plied Biosystems) or Invader (Third Wave Technologies)
technologies on a British case-control collection (3,527
cases and 3,930 controls), in accordance with the manu-
facturers’ protocols. All genotyping data were double
scored to minimize error.

Multilocus Test for Association

Chapman et al. (2003) suggested the use of a multi-
variate test statistic in the analysis of a tagged region.
Essentially, the test contrasts the profile of tag SNP allele
frequencies between cases and controls by use of Ho-
telling’s test (Xiong et al. 2002; Chapman et al. 2003;2T
Fan and Knapp 2003). The test does not assume Hardy-
Weinberg equilibrium in cases and controls; since no
imputation of haplotype phase is required, variance and
covariances of genotypes are estimated empirically. In
the analysis of the case-control collection, the multilocus
test was stratified by broad geographical region within
Great Britain to exclude the possibility of confounding
by geography. For each of 12 regions, we computed the
vector of contrasts between case and control allele fre-
quencies. The final test was based on a weighted sum of
these contrast vectors, with weights inverselyproportional
to variance. This procedure is a multivariate generali-
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Table 1

Polymorphisms Identified in CD25

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Table 2

Summary of Tag SNPs for the Case-Control
Collection

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

zation of standard methods for control of confounding
in epidemiological studies (Breslow and Day 1980; Clay-
ton and Hills 1993).

In the analysis of the family collection, parent-child
trios were analyzed by a very closely related procedure.
Each trio contributed a vector of transmitted allele pairs
and a vector of untransmitted allele pairs. These can be
thought of as “cases” and matched “pseudocontrols,”
respectively. Each pair was then scored 0, 1, or 2, and
the case and control profiles were compared using a paired
Hotelling’s test (Chapman et al. 2003).2T

These tests are most powerful when the effect of the
causal variant is codominant. A recessive mode of in-
heritance results in reduced heterozygosity at the causal
locus, but this may be reflected only weakly at any one
tag SNP. Chapman et al. (2003) suggested a method for
incorporation of this information into the multilocus
test, but we did not judge it to be necessary in our study.

The evidence from case-control and family collections
was combined in the same manner as was used to amal-
gamate the evidence from different geographical regions
in the analysis of the case-control collection; a vector of
contrasts comparing case and control allele frequencies
for the set of tag SNPs was contributed from both stud-
ies, and a weighted mean of this vector was computed
and tested against 0 (appendix A).

Imputation of Missing Tag SNP Genotypes

The multilocus test takes account of correlations be-
tween genotype for different tags and, therefore, requires
that a complete set of scores be entered for each subject.
Even a modest genotyping failure rate can result in a
substantial attrition of subjects for such “complete case”
analyses and substantial loss of power. We have avoided
this by imputation of missing values.

Imputation of missing genotypes was performed using
linear regression; that is, the missing tag SNP, t (i pi

, genotypes (scored 0, 1, or 2) were predicted1,2, … ,n)
from the regression of ti on the set of complete tag SNP
genotypes, excluding ti. Clayton et al. (2004) justify this
procedure for high-LD regions. Imputation was per-
formed under the null hypothesis so that, for the same
genotypes at observed loci, a missing locus would be
assigned the same score whether the subject were a case
or a control. The effect of this is to shrink case-control
differences toward zero, but, since their variances and
covariances are estimated empirically, the size of the test
is preserved.

We evaluated the effect of imputation on type 1 error

rates and on power in a simulation study. A number of
scenarios, defined by the number of tag SNPs (maximum
20) and the percentage of missing at-random tag SNP
genotypes (5% or 10%), in both case-control samples
(1,000 cases and 1,000 controls) and families (1,000
parent-child trios), were considered. The effect of im-
putation on type 1 error rates in data generated under
the null hypothesis of no association was evaluated on
the basis of how often the null hypothesis was rejected
when a significance test with a critical P value of P1 was
applied. The null hypothesis should be rejected with prob-
ability P1. The power, with and without the imputation
of missing tag SNP genotypes, was evaluated on the basis
of how often the null hypothesis was rejected when ap-
plied to data generated under the alternative hypothesis.

Results

The resequencing of CD25 for 32 CEPH individuals iden-
tified 55 polymorphisms (table 1), 54 of which were SNPs;
13 of these SNPs were novel when compared with dbSNP
build 123, and 1 polymorphism, ss35031434, was a novel
G insertion/deletion. Sixteen SNPs had an MAF !5% and
were consequently not included in the tag SNP selection.
From the 39 common SNPs (MAF �5%), 20 tag SNPs
were selected and genotyped in the case-control collection
(table 2). All tag SNP genotypes in cases and controls
were in Hardy-Weinberg equilibrium.

The multilocus test P value for the case-control col-
lection was (3,521 case and 3,930 control�86.5 # 10
genotypes; ). The multilocus test was strati-F p 3.720,7419

fied by 12 broad geographic regions, to minimize any
confounding due to variation in allele frequencies across
Great Britain (see the “Subjects and Methods” section)
(unstratified P value was ).�81.4 # 10

We proceeded to genotype the tag SNPs in a large
family collection (472 British and 268 U.S. multiplex
families with T1D). tag SNP genotypes in parents and
affected offspring were all in Hardy-Weinberg equilib-
rium. We replicated the association in the family col-
lection, with a multilocus test P value of �37.3 # 10
(parent-child trio ; ) (ta-2genotypes p 1,378 x p 38.720

ble 3), thus providing independent evidence of an asso-
ciation between T1D and CD25. Figure 1 shows the
striking agreement between the odds ratios and the rela-
tive risks (transmission ratios) for the minor alleles of
the tag SNPs genotyped in the case-control and family
collections. Consequently, when results from both studies
were combined, the multilocus test (Smyth et al. 2004)



Figure 1 Upper panel, Odds ratios and transmission ratios for the minor allele of CD25 tag SNPs genotyped in the case-control (filled
circles) and family (open circles) collections, respectively. Vertical lines indicate 95% CIs. Lower panel, Chromosome position of CD25 tag
SNPs. Open long rectangle indicates UTR, filled long rectangles indicate exons, filled short rectangles indicate regulatory regions, and the arrow
labeled “�1” indicates the transcript start site. A version of this figure can be viewed at the T1DBase Web site.
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Table 3

Summary of Tag SNPs for the Family Collection

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Table 4

Effect of Imputation on Power of a Simulated Case-Control Study and of a Family Study

PERCENTAGE OF TAG SNP GENOTYPES MISSING AT RANDOM

In Case-Control Study with In Family Study with

NO. OF TAG SNPS

AND P

No Imputation Imputation No Imputation Imputation

5% 10% 5% 10% 5% 10% 5% 10%

4:
.05 99.9 98.8 100.0 99.8 97.3 78.6 99.8 99.9
.01 98.6 95.4 99.6 99.3 90.8 62.5 98.7 97.8
.001 94.3 84.8 98.1 96.6 75.2 35.3 95.5 92.0

12:
.05 89.7 57.5 99.7 99.5 38.9 3.3 99.3 98.6
.01 74.2 33.2 97.8 97.3 19.0 .1 95.8 93.6
.001 48.7 13.1 92.4 91.0 3.3 .0 85.1 79.7

20:
.05 46.5 16.9 96.0 94.7 12.9 .0 99.1 97.7
.01 24.1 5.2 88.1 85.3 2.1 .0 95.3 92.4
.001 7.9 .6 67.7 65.2 .1 .0 80.9 78.0

NOTE.—Power was estimated from 1,000 simulations of each type of study (1,000 each, cases,
controls, and parent-child trios). The causal variant had an OR of 1.5 and a causal-allele frequency of
∼35% in controls and parents.

(appendix A) provided strong statistical support for a
T1D locus in the CD25 region of chromosome 10p15.1
( ; ). There was no sugges-2 �10x p 88.6 P p 1.3 # 1020

tion of reduced heterozygosity in cases or affected off-
spring, an indication of recessive inheritance.

Simulations of data generated under the null hypothe-
sis indicated that imputation did not affect type 1 error
rates; that is, the null hypothesis was rejected with prob-
ability P1 when a significance test with a critical P value
of P1 was applied. For example, the null hypothesis was
rejected in 483, 102, and 9 of 10,000 simulations of
1,000 cases and 1,000 controls genotyped in 20 tag SNPs,
with 5% of tag SNP genotypes missing at critical P val-
ues of 0.05, 0.01, and 0.001, respectively. Simulations
also indicated that imputation partially recaptures the
loss of power incurred by restricting the analysis to sub-
jects with a complete set of tag SNP genotypes (table
4). For example, if a genomic region has 20 tag SNPs
that are genotyped in 1,000 cases and 1,000 controls
with 5% of tag SNP genotypes missing at random, by
imputing missing genotypes, power to detect a causal
variant with an odds ratio of 1.5 (causal allele frequency
of 0.35 in controls) at a significance level of P p .05
increases from 46.5% to 96.0% in 1,000 simulations.
In the equivalent exercise in families (1,000 parent-child
trios), power increases from 12.9% to 99.1%. Imputa-
tion is particularly important for parent-child trios and

for candidate genes with a relatively large number of
tag SNPs, since, in those cases, restriction of the analysis
to complete cases is particularly damaging. The multi-
locus test P values for the case-control and family col-
lections without imputation were (2,812�62.1 # 10
case and 2,981 control genotypes; ) andF p 3.220,5761

.052 (parent-child trio ; ),2genotypes p 558 x p 31.220

respectively.

Discussion

In the present study, we have assessed only the poly-
morphisms located in or close to exons and known regu-
latory regions, as well as up to 3 kb of 3′ and 5′ flanking
sequence. Since we have found strong statistical evidence
for a T1D locus in the CD25 region, we have now started
to resequence an extended and, where possible, contigu-
ous CD25 chromosome region of ∼190 kb including
CD25 to identify potential causal variants. Fine mapping
of an extended region is required, since the CD25 tag
SNPs could be in LD with a causal variant beyond CD25.
For example, IL15RA, a strong functional candidate
(Fehniger and Caligiuri 2001), is ∼30 kb from the 3′

flanking sequence of CD25.
Since the causal variant(s) in the CD25 region remains

unknown, to replicate the association with T1D re-
ported in the present study, a tag SNP approach would
be required, genotyping either the same or a new set of
tag SNPs. A new selection could be required—when the
population in a subsequent study has a different pattern
of LD in the CD25 region, for instance. The temptation
to ignore the foundations of the reported association,
the set of tag SNPs, and the pattern of LD behind their
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selection and to genotype only the most-associated tag
SNP may well lead to false-negative results, since the
power of the present study is based on the complete set
of tag SNPs.
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Appendix A

In an earlier study (Smyth et al. 2004), we used and
defined a score test to combine single-locus tests from
family- and population-based studies; in the present ar-
ticle, we used a multivariate version of that test. Chap-
man et al. (2003) defined the multilocus test as a mul-
tivariate score test, , where U is a score2 T vT p U V U
vector—with one element for each tag SNP, contrasting
allele frequencies in cases and controls or, in family stud-
ies, frequencies of transmitted and untransmitted alleles.
V is the estimated variance of the score statistic, and v

denotes a generalized inverse. The test statistic is asymp-
totically distributed as x2, with degrees of freedom equal
to the rank of V, which is equal to the number of tag
SNPs. When combining results from family- and popula-
tion-based studies, we first calculate the U vector and V
matrix for each study. We then calculate an overall U
and V by summation of the contributions from each
study— and —and calculateU p U � U V p V � V1 2 1 2

the T2 test statistic as before.
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